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Abstract. We consider smooth finite dimensional optimization problems with a compact,
connected feasible set M and objective function f. The basic problem, on which we focus, is:

how to get from one local minimum to all the other ones. To this aim we introduce a bipartite
digraph C as follows. Its nodes are formed by the set of local minima and maxima of fjM,
respectively. Given a smooth Riemannian (i.e. variable) metric, there is an arc from a local
minimum x to a local maximum y if the ascent (semi-)flow induced by the projected gradients

of f connects points from a neighborhood of x with points from a neighborhood of y. The
existence of an arc from y to x is defined with the aid of the descent (semi-)flow. Strong
connectedness of C ensures that, starting from one local minimum, we may reach any other

one using ascent and descent trajectories in an alternating way. In case that no inequality
constraints are present or active, it is well known that for a generic Riemannian metric the
resulting min-max digraph C is indeed strongly connected. However, if inequality constraints

are active, then there might appear obstructions. In fact, we show that C may contain
absorbing two-cycles. If one enters such a cycle, one cannot leave it anymore via ascent and
descent trajectories. Moreover, the cycles being constructed are stable with respect to small
perturbations (in the C1-topology) of the Riemannian metric.
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1. Introduction and Motivation

In this paper we consider smooth finite dimensional optimization problems
of the type
ðPÞ Minimize f on the feasible set M, where

M:¼ fx 2 Rn j hiðxÞ ¼ 0; i 2 I; gjðxÞP0; j 2 Jg;
and where f; hi; gj : Rn ! R are smooth (i.e. of classC1), j I j < n, j J j <1.
We are concerned with the following basic problem from global optimi-

zation: how to get from one local minimum to all the other ones using
ascent and descent methods? As main references we use [3, 4]. Throughout
the paper we make the following assumption:

ASSUMPTION 1. The feasible setM is non-empty, compact and connected,
and the linear independence constraint qualification (LICQ) is satisfied at
all points of M. Moreover, all Karush–Kuhn–Tucker points (KKT-points)
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for f jM and for ð�f ÞjM are nondegenerate and they have pairwise different f-
values.

LICQ is said to hold at �x 2M if the vectors Dhið�xÞ, i 2 I, Dgjð�xÞ,
j 2 J0ð�xÞ, are linearly independent. Here Dh stands for the row vector of
partial derivatives of h and J0ð�xÞ denotes the set of active inequality con-
straints, i.e. J0ð�xÞ ¼ fj 2 J j gjð�xÞ ¼ 0g. Under LICQ, a KKT-point �x for
f jM is said to be nondegenerate if strict complementarity holds and the
restriction of the Hessian of the Lagrangian on the tangent space T�xM
is nonsingular, where T�xM :¼fn 2 Rn jDhið�xÞn ¼ 0; i 2 I;Dgjð�xÞ ¼ 0; j 2
J0ð�xÞg. The number of negative eigenvalues of the latter restriction is called
the (quadratic) index of the KKT-point �x.
The following idea from Morse theory plays a key role in global optimi-

zation. Let Ma denote the lower level set fx 2M j fðxÞO ag. As the level
increases, the number of connected components of Ma, say ], can only
change in the following two cases. Either we pass a level corresponding to
a local minimum. In that case, the number ] increases by one. Or we pass
a level corresponding to a special type of KKT-point of index 1, called
decomposition point. In the latter case, the number ] decreases by one. Not
all KKT-points of index 1 are decomposition points; only a part of them.
Since the feasible set M is connected, the number of decomposition points
is one less than the number of local minima.
If we were able to detect all of those decomposition points or, more gen-

erally, all KKT-points of index 1, then the problem of global optimization
would be settled. In fact, descending from those points in the two canoni-
cal opposite directions of quadratic descent would lead us to all local min-
ima. However, finding KKT-points of index 1 is extremely difficult (cf. [2,
4]). On the other hand, raising the complete lower level set will be compu-
tationally intractable from several points of view. For example, KKT-
points of higher index may cause a complicated topology in the lower level
sets (cf. [4]).
Therefore, it might be more effective trying to jump between local min-

ima via local maxima. This could be done with the aid of certain trajecto-
ries of ascent and descent flows, respectively. In fact, given a smooth
variable (i.e. Riemannian) metric R on Rn, we can form the gradient field
gradRf of f with respect to R. Then at each point �x 2M we project gradRf
to the tangent cone C�xM (with respect to the metric R), where
C�xM ¼ fn 2 Rn jDhið�xÞ ¼ 0; i 2 I;Dgjð�xÞn P 0; j 2 J0ð�xÞg. The resulting
projected gradient vector field on M generates a semi-flow on M, called the
ascent (semi-)flow. Replacing f by �f we obtain the corresponding descent
(semi-)flow. The possible transitions from local minima (maxima) to local
maxima (minima) via the latter semi-flows are coded by means of a directed
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bipartite graph Cðf;RÞ, depending on the objective function f and the Rie-
mannian metric R.
The nodes of Cðf;RÞ are formed by the set of local minima of f jM, say
f�x1; . . . ; �xpg and the set the local maxima of f jM, say f�y1; . . . ; �yqg. Choose
arbitrarily small neighborhoods (germs) U�x1 ; . . . ;U �yq of �x1; . . . ; �yq in M.
Then there exists an arc from �xi to �yj (from �yj to �xi) if the ascent (descent)
flow connects some point of U�xi (U �yj) with a point from U �yj (U�xi).
If Cðf;RÞ is strongly connected, then we can reach from any local mini-

mum all the other ones by choosing alternatingly certain trajectories of the
ascent flow (going upwards form a local minimum to a local maximum)
and the descent flow (going downwards form a local maximum to a local
minimum). In case that no inequality constraints may become active, strict
connectedness can generically be expected, as it is stated by the following
theorem.

THEOREM 2 [1, 4]. Let f and M be given and suppose that all inequality
constraints are redundant. Then, for generic Riemannian metric R, the min-
max digraph Cðf;RÞ is connected.

Note that, in case that all inequality constraints are redundant, the
ascent and descent flows are just opposite to each other. However, the
appearance of active inequality constraints may change the situation drasti-
cally. In particular, absorbing two-cycles may appear. If one enters such an
absorbing two-cycle, one cannot leave it anymore via ascent and descent
flows.

DEFINITION 3. Let C be a directed graph. An absorbing two-cycle is a
set of nodes x; y such that in C there are both an arc from x to y and from
y to x (two-cycle), and such that all the other arcs incident with x or y are
incoming arcs (absorbing).

In Figure 1 two examples of absorbing two-cycles are depicted.

x
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y

Figure 1. Absorbing two-cycles.
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The next theorem is the main result of the paper. Its proof will be given
in Section 2. Note that the dimension dimðMÞ of M equals n� j I j .

THEOREM 4. Suppose that dimðMÞP2 and J0ðxÞ 6¼ ; at some x 2M. Let
m 2 N . Then there exists a pair ðf;RÞ and a ðC2;C1Þ-neighborhood O of
ðf;RÞ such that for all ð ~f; eRÞ 2 O the min–max digraph Cð ~f; eRÞ contains at
least m absorbing two-cycles.
Although Theorem 4 is quite discouraging, we also have the following

positive result.

THEOREM 5. ([3]). For given f there exists a Riemannian metric R such
that Cðf;RÞ is strongly connected.

Concrete metrics resulting in a strongly connected min–max digraph are
presented in [5]. In fact, the idea in [5] is based on automatic adaptation
(via constraints) of a given metric R in the spirit of interior point methods.

2. Proof of Theorem 4

The possible disconnectedness of the min–max digraph has been shown for
the first time by Horst Zank [6]. His example was two-dimensional with a
minimal number of KKT-points for f jM and ð�f ÞjM. In fact, let M be a
two-dimensional disc and suppose that f jM has two local minima and two
local maxima (all of them in the boundary oM) and in addition, one saddle

point (in the interior M
�
). The Riemannian metric is chosen such that the

separatrices (stable and unstable manifolds) of the saddle point intersect
oM outside the chosen neighborhoods of the local minima and maxima.
See Figure 2, in which also some level lines of f have been sketched. The
resulting min–max digraph is not connected. In particular it consist of two
absorbing two-cycles of the type sketched in Figure 1 on the left. More-
over, the latter situation is stable with respect to small perturbations of

min1
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max 2
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Figure 2. Zank’s example.
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both the Riemannian metric R (in the C1-topology) and the objective func-
tion f (in the C2-topology). The latter stability follows from a continuity
argument using the theory of dependence of solutions of ordinary differen-
tial equations on perturbations of the right handside as well as the differen-
tiable dependence of the KKT-points of f jM and ð�f ÞjM on f itself (cf. [4]).
Note that the saddle point in Figure 2 serves as a decomposition point

for both f jM and ð�f ÞjM. This phenomenon can only occur in dimension
2. In higher dimensions there would be more KKT-points for f jM and
ð�f ÞjM if the number of absorbing two-cycles would be greater than one.
The idea of our construction for proving Theorem 4 in all dimensions

greater than 1 is the following. First we construct a basic (stable) model of
a two-cycle. Then, by means of some surgery on a given f jM, this model is
locally implanted at m places in M. In this way we obtain a new f and a
new Riemannian metric R which, as a pair ðf;RÞ, fulfil the requirements as
stated in Theorem 4. In the following we focus on the main geometric-
topological ideas. For missing technical details we refer to the book [4].

2.1. THE BASIC MODEL OF A TWO-CYCLE

For kP2 we decompose Rk as follows: Rk ¼ Rk�1 � R. Let
Dn:¼fx 2 Rn j

Pn
i¼1 x

2
i O1g denote the Euclidean unit ball in Rn and con-

sider the cylinder C :¼ Dk�1 �D1 in Rk. In a neighborhood of C the func-
tion h is well-defined, where

hðx1; . . . ;xkÞ ¼ xk 2�
Xk�1

i¼1
x2i

 !

:

Note that the point ð0;�1Þ 2 Rk�1 � R is the global minimum of h j C and
moreover, it is the only KKT-point of h j C. The function value at the glo-
bal minimum might be varied arbitrarily by adding a suitable constant to
the function h.

min

max

Figure 3. Some level sets.
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On the other hand, the point ð0; 1Þ is the global maximum of h j C and
moreover, it is the only KKT-point of ð�hÞ j C. The points ð0;�1Þ and
ð0; 1Þ are nondegenerate KKT-points for h j C and ð�hÞ j C, respectively. See
Figure 3 for some level lines in case k ¼ 2. As a Riemannian metric we
choose the constant metric given by the standard scalar product
hu; vi :¼

Pk
i¼1 uivi.

See Figure 4 for some trajectories of the associated ascent (semi-)flow.
Note that the ascent flow converges to the maximum, whereas the descent
flow converges to the minimum.
Note, in particular, the boundary behaviour. Of particular interest for

our construction are the flows in the interior C
�
of C. In C

�
the trajectories

of the descent and the ascent (semi-)flow coincide, but have opposite direc-
tions. Let us fix in C two small neighborhoods (germs) Umin and Umax of
ð0;�1Þ and ð0; 1Þ, respectively, such that not any semi-flow starting in one
of them will touch the cylindrical part of the boundary oDk�1 �D1.
Because the trajectory c :¼f0g � ð�1; 1Þ lies in the interior of C, continuity
arguments guaranty the existence of the latter germs.
The latter situation is stable under small perturbations of both the (con-

stant) metric (in the C1 � topology) and the function h (in the C2-topology).
Strictly speaking, the (germ)-neighborhoods also change, since the mini-
mum and the maximum of h j C may shift; but this is only a technical detail.

2.2. THE U-SHAPE CONSTRUCTION

In order to perform a surgery on a given f jM by implanting the basic two-
cycle model, it is convenient to make the following intermediate step.
Let / be a smooth diffeomorphism of an open neighborhood of the

cylinder C onto an open set in Rk having the following properties (see Fig-
ure 5). The cylinder C is mapped to the upper half space Rk�1 �H, where
H:¼fx 2 R jxP 0g. The interval c ¼ f0g � ½�1; 1� is mapped onto a
U-shape curve /ðcÞ, meeting the subspace Rk�1 � f0g transversally.
Finally, the balls DðtÞ:¼Dk�1 � ftg, t 2 ½�1; 1�, are mapped on balls as

min

max

Figure 4. Typical ascent trajectories.
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well, where the images of Dð�1Þ and Dð1Þ lie in the plane Rk�1 � f0g. By
means of shifting and scaling we may assume that the image /ðCÞ is con-
tained in a prescribed neighborhood of the origin of Rk.
The constant metric around C induces, via the diffeomorphism /, a Rie-

mannian metric around /ðCÞ, say R/. In an analogous way the function h
defines a smooth function h/ :¼ h � /�1, defined around /ðCÞ.
By the very construction, just as the image under a diffeomorphism, the

(semi-)flow for h/ starting in one of the germ neighborhoods /ðUminÞ or
/ðUmaxÞ will reach the other one without touching the image of the cylin-
drical part of the boundary. In particular, the image /ðcÞ is the common
trajectory of an ascent and a descent flow for h/ w.r.t. the metric R/, see
Figure 5.
We shortly refer to ð/ðCÞ; h/;R/Þ as a U-shape two-cycle.

2.3. THE IMPLANTATION STEP

Now suppose that dimðMÞP2 and that at some point �x 2M we have
J0ð�xÞ 6¼ ;. We will change a given pair ðf;RÞ in a neighborhood of �x by
successively implanting m U-shape two-cycles. It will be clear that all the
assumptions regenerate; hence it suffices to consider the case m ¼ 1, i.e. we
merely present the implantation of just one U-shape two-cycle.
Since LICQ holds at �x, we may locally use the function values of the

functions hi, i 2 I, gj, j 2 J0ð�xÞ as new coordinates. Hence M locally takes
the form Rp �Hq, where q :¼ j J0ð�xÞ j and p :¼ n� j I j � q. Note that Hq is
the nonnegative orthant in Rq. Consequently we may choose a point x̂ 6¼ �x
outside the set of local minima and maxima of f jM such that j J0ðx̂Þ j ¼ 1.
Now we choose local coordinates around x̂ such that x̂ is sent to the origin
of Rk and M takes the form Rk�1 �H. We may assume that the latter
open neighborhood U of the origin does not contain any local minimum
or maximum of f jM. On the other hand, our U-shape two-cycle may be
assumed to be so small that /ðCÞ � U. In an open neighborhood V � U of
/ðCÞ we replace the function f and the Riemannian metric R by h/ and
R/, respectively. In this way we have two ‘‘partial’’ functions and metrics

γ

C

φ

φ(γ)

Rk-1x{0}

Figure 5. The U-shape construction.

ABSORBING CYCLES IN MIN–MAX DIGRAPHS 91



with overlapping regions of definition: ðh/;R/Þ on V and ðf;RÞ outside
/ðCÞ. By means of a suitable smooth partition of the unity we glue the
partial functions and metrics together and we arrive at a modified function
~f and Riemannian metric eR such that, on /ðCÞ, they coincide with the
ones of the U-shape two-cycle and, outside U, with the original ones. This
implies, even for the glued model, that ascent semi-flows starting in
/ðUminÞ necessarily reach /ðUmaxÞ and descent semi-flows starting in
/ðUmaxÞ reach /ðUminÞ.
Due to the partition of unity construction the functions ef jM and ð�ef ÞjM

might have degenerate KKT-points. However, arbitrarily close to ef (in the

C2-topology, see [4]), there are functions f̂ which meet all the conditions in
Assumption 1. Finally, taking f̂ as objective function and eR as Riemannian
metric, we obtain a min-max digraph Cðf̂; eRÞ with at least one absorbing
two-cycle.
This completes the proof of Theorem 4.
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